
w w w . b i j o n l i n e . c o m 	 S e p t e m b e r 	 2 0 0 5

Spec ial ForreSter
reSearch Section

e i i vs. etl: no contest

creating Standards-Based
Soa Governance

10 Factors to consider
When comparing enterprise

portal Servers

O p t i m i z i n g 	 B u s i n e s s 	 I n t e g r a t i o n 	 & 	 E f f e c t i v e n e s s 	 T h r o u g h 	 L e a d i n g - E d g e 	 T e c h n o l o g i e s

A P U B L I C A T I O N

Enterprise	Integrity:	
Composite	Application	Platforms—Part	II

By DaviD McGoveran

ALSO IN THIS ISSUE:

Last month’s
column

began a series
on Composite Application
Platforms (CAPs). We
discussed a CAP’s purpose
and benefits, and began a
detailed look at the design
time components with the
most important, the
Orchestration Modeler. The
top-level user interface, it is
the primary determinant of
a CAP’s ease of use and
productivity. To be most
effective, it should provide

conceptual abstraction and integration. Additional services
(if well-integrated) determine its functional breadth. This
month we discuss the remaining design components:
transformation and transparent data access modeling,
transaction modeler, Integrated Development Environment
(IDE), and portal designer.

• Transformation and Transparent Data Access Services:
A composite application often draws data in incompatible
formats from disparate data stores. Data passed between
services by the CAP may need to be transformed.
Transformations can be exceedingly complex, requiring
support for multiple sources and targets, semantic
rationalization, staging and synchronization, etc. An
intuitive design interface should be provided with
automatic error checking. Transformations should be
represented as services invocable within an orchestration.
Since transformations are an IT artifact, it should be
possible to defer their definition, and even hide them in
the orchestration’s representation. Data access and
transformation is preferably driven by live metadata,
rather than relying on developer-entered data descriptions.
Rule-based and parameter-driven data transformation
services are essential in all but the simplest of composite
applications. The CAP should support an extensible
library of transformations. Access to an Enterprise
Information Integration (EII) can mitigate some of the
need for these services.

• Transaction Definition and Management: Real business
applications require enforcement of units of recovery
(physical transactions), units of consistency (logical
transactions), and units of audit (business transactions).
Arbitrary units of work composable across diverse
components and services, and under the control of multiple
resource managers or business entities, should be possible.
In many environments, both tightly coupled distributed
transactions and long-running transactions must be
supported. Multiple transaction models (tightly coupled
distributed transactions, compensation spheres, and
collaborative transactions) and environments (such as
CORBA, CICS, WebLogic/Tuxedo, Enterprise JavaBeans

E n t E r p r i s E
i n t E G r i t Y
C o m p o s i t e
A p p l i c a t i o n
p l a t f o r m s :
p a r t i i

B Y D A v i D M c G o v E r A n

David McGoveran is president of Alternative Technologies. He has more than 25
years of experience with mission-critical applications and has authored numerous
technical articles on application integration.
e-Mail: mcgoveran@bijonline.com; Website: www.alternativetech.com

About the Author

[EJBs], or .NET) should be supported. Developers should
be guided to use an appropriate transaction model based
on declarative specification of requirements, rather than
forced to understand the intricacies of and interactions
among these technologies. Recovery methods should be
predictable and guarantee consistency across orchestrated
components and services. My “Business Transaction” series
(March-September 2004) provides more information.

• IDE: A model-driven design and development tool suite is
needed to develop new services or components and to
prepare existing services for discovery and interoperation
with the orchestration engine. The IDE should hide
complexity (e.g., the details of EJBs, Web Services
Definition Language [WSDL], SOAP, etc.), preferably
through a combination of a model-driven methodology, a
high-level conceptual model, wizards, a library of patterns
(orchestration, service, and transformation), and default
templates. In simplest form, such an IDE enables new
services that are orchestration-aware. With more
sophistication, an IDE for designing and developing
services that are event-driven and rule-based applications
or application components is highly desirable. An intuitive
user interface should hide the complexities of diverse
components from most users through a single
development abstraction. Developers should be able to
rapidly encapsulate existing software assets, deploying
them as if they were native. These features accelerate
composite application design, deployment, and execution
through asset reusability (regardless of original
deployment technology) and automatic configuration.

• Portal Designer: A common facility is required that
implements end-user interactions as composable services.
A portal integration tool with the user interface logic
implemented as Web Services is standard. Additionally,
portal support offers some form factor independence:
Mobile client support may require no more than
redeployment for the particular interaction device, but
requires run-time support for data synchronization (e.g.,
bi-directional replication) and asynchronous connections.

 An effective CAP won’t limit services integration to support
for a single services interaction model or make assumptions
about service complexity. Orchestration standards are
immature and unrealistic, failing to adequately support human
interaction and workflow, complex business processes,
transaction management, error and exception handling, etc. A
CAP that merely implements some orchestration standard
jeopardizes the integrity of real enterprise applications, and
ultimately will fail to deliver on its promises. Next month, we’ll
examine some run-time requirements. bij

� • B u s i n e s s i n t e g r a t i o n J o u r n a l • S e p t e m b e r 2 0 0 5

